HERMES - Hybrid Enhanced Regenerative Medicine Systems
Horizon 2020
Ruolo DEIB: Partecipante
Data inizio: 01/01/2019
Durata: 60 mesi
Sommario
Brain disorders are the most invalidating condition, exceeding HIV, cancer and heart ischemia, with significant impact on society and public health. Regenerative medicine is a promising branch of health science that aims at restoring brain function by rebuilding brain tissue. However, repairing the brain is one of the hardest challenges and we are still unable to effectively rebuild brain matter. Epilepsy is particularly challenging due to its dynamic nature caused by the relentless brain damage and aberrant rearrangements of brain rewiring. To overcome the biological uncertainty of canonical regenerative approaches, we propose an innovative solution based on intelligent biohybrids, made by the symbiotic integration of bioengineered brain tissue, neuromorphic microelectronics and artificial intelligence, to effectively drive self-repair of dysfunctional brain circuits and we validate it against animal models of epilepsy. HERMES fosters the emergence of a novel biomedical paradigm, rooted in the use of biohybrid neuronics (neural electronics), which we name enhanced regenerative medicine. To this end, HERMES will promote interdisciplinary cross-fertilization within and outside the consortium; it will extend the concepts of enhanced brain regeneration to philosophy, ethics, policy and society to foster the emergence of a new innovation eco-system. Intelligent biohybrids will represent a major breakthrough to advance brain repair research beyond regenerative medicine and neurotechnology alone; it will bring new knowledge in neurobiology, cognitive neuroscience and philosophy, and new neuromorphic technology and AI algorithms. HERMES will bring a giant conceptual leap that will shift the concept of biomedical interventions from treating to healing. In turn, it will potentially generate major returns on health care and society at large by bringing previously unimaginable possibilities to defeat disorders that represent today a global major burden of disease.