Accedi alla Intranet
EN
IT
  • EN
    IT
  • Accedi alla Intranet
  • Il dipartimento
    • Missione
    • Dal direttore
    • Governo
    • Personale
    • Fatti principali
    • Premi
    • DEIB4SDG
    • Notizie
  • Formazione
    • Futuri Studenti
    • Offerta Formativa
    • Percorsi Alta Formazione
    • Tirocini
    • Docenti
    • Segreteria Didattica
    • Tesi
    • Studenti stranieri
    • Opportunità per gli studenti
    • Tutoring
    • Prospettive d'impiego
  • Dottorato
  • Ricerca
    • Strategie
    • Aree
    • Aree interdisciplinari
    • Linee
    • Progetti
    • Laboratori
    • Brevetti
    • Personale
    • Joint Research Platform
    • Centri collegati
  • Industria
    • Competenze
    • Collaborazione
    • Formazione
    • Spin-off
    • Industria 4.0
    • DEIB Community
  • Relazioni internazionali
    • Obiettivi
    • Reti di Eccellenza
    • Programmi internazionali
    • Associazioni
    • Info per Ospiti Internazionali
  • Lavora con noi
    • Valutazione comparativa
    • Collaborazioni di didattica
    • Assegni di ricerca
    • Borse studio per ricerca
 » Il dipartimento » Personale
Prof. PITTORINO FABRIZIO
Ricercatore
[javascript protected email address]
Area di ricerca:
  • Informatica
Linea di ricerca:
  • Architetture
Fabrizio Pittorino received the BSc (2011) and MSc (2013) degrees in Physics from Roma University “La Sapienza”, and the PhD degree in Physics from Parma University (2017), specializing during his studies in statistical physics and its applications to biological and artificial neural networks. After the PhD, he has been a Postdoctoral Researcher in the Computing Sciences department of Bocconi University (Milan), consolidating his background with approaches to statistical inference and empirical deep learning. Currently he is Assistant Professor at the Dipartimento di Elettronica, Informazione e Bioingegneria of Politecnico di Milano (Italy) working with the AI-Tech Research Lab.
His current research interests are focused on AI and in particular on artificial neural networks, both from the mathematical modelling and technological points of view.
His research blends theoretical tools and computational experiments in order to investigate foundational/algorithmic questions and design new technological solutions in deep learning. Active areas of research are the role of the loss function in the optimization landscape of neural networks and concept drift detection/adaptation in machine learning. Another area in which he is interested are the neuroscientifically-inspired alternatives to the backpropagation algorithm.
COME RAGGIUNGERCI
map
Via Ponzio 34/5,
20133 Milano
Italia
CONTATTI E PEC
tel. +39 02 2399 3400
pecdeib@cert.polimi.it
(Solo da PEC a PEC)
ACCEDI ALLA INTRANET
RUBRICA
ISCRIVITI ALLA NEWSLETTER
INFORMATIVA PRIVACY - INFORMATIVA COOKIE
PREFERENZE COOKIE