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DESIGN AND EVALUATION OF MEMRISTOR-MEMORY-BASED STRONG AND WEAK PHYSICAL 
UNCLONABLE FUNCTIONS 
Supervisor: Prof. Daniele Ielmini  
 

Abstract:  

In recent decades, the microelectronics industry has witnessed exponential growth in 
performance and computing capabilities, driven by the relentless scaling of electronic 
components, resulting in an increasing number of transistors on integrated circuits (IC). 
However, this scaling trajectory is reaching its limits due to structural and physical constraints, 
such as the heat wall and the consequent ceiling imposed on clock frequency. Additionally, 
conventional computing systems based on the von Neumann architecture face inherent 
challenges stemming from the separation of processing and memory units, leading to 
significant performance disparities known as the memory wall. This architectural setup proves 
inefficient, particularly in applications requiring extensive data processing, such as machine 
learning, due to the sluggish data transfer rates between the CPU and memory. To address 
these constraints, especially in the era of the Internet of Things (IoT) and Big Data, interest has 
surged in alternative computing paradigms like in-memory computing (IMC), neuromorphic 
computing, and stochastic computing. In this context, emerging memory technologies, 
notably memristors such as resistive switching random access memory (RRAM), phase change 
memory (PCM), ferroelectric memory (FeRAM), and spin-transfer torque magnetic memory 
(STT-MRAM), are being explored for their non-volatility, scalability, low power consumption, 
and fast operation, as well as their compatibility with the complementary metal oxide 
semiconductor (CMOS) process. However, leveraging these devices in practical applications 
requires addressing the challenges associated with their stochastic nature. On the other hand, 
it is precisely the inherent stochasticity of these devices that becomes a strong point in favor 
of their use in security-related applications. 
  
This doctoral thesis aims to explore the development of Physical Unclonable Functions (PUFs) 
based on emerging non-volatile memory (NVM) technologies. In the realm of hardware 
security, PUFs can provide a unique physical fingerprint to devices in the Internet of Things 
(IoT), which is a valuable means of enhancing security through the generation of unique and 
volatile cryptographic keys with no need to store them in non-volatile memory. By capitalizing 
on the inherent stochastic characteristics of emerging NVM devices, this research work seeks 
to develop PUFs that offer enhanced security features while addressing the limitations 
associated with their use in practical applications and proposing solutions to mitigate them. 



Through a comprehensive analysis, extensive physics-based simulations, and experimental 
validations, the dissertation contributes to advancing the understanding and utilization of 
emerging NVM technologies for secure hardware authentication and cryptographic 
applications. 
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Abstract:  

Nowadays, the volume of data produced in our society is exponentially surging, as is its 
variety and complexity. Automotive, smart cities, and Industry 4.0 are just a few examples 
of trends that are accelerating the demand for increased computational and storage 
capacities. Having surpassed its "second winter", Artificial Intelligence (AI) today offers a 
tool to address these new challenges. However, in its practical implementations, AI tends 
to overload computing infrastructures and systems, leading to an even more dramatic 
increase in computational demand. The underlying issue is rooted in the architecture 
of modern computers, proposed in 1945 by Von Neumann. The Von Neumann architecture, 
which separates the computing unit from the memory, has allowed us to build 
flexible, general-purpose machines over the past 70 years. However, this architecture is 
now showing significant inefficiencies primarily due to the need to move data between the 
two units. This problem is exacerbated by an asymmetry in the rate of technological 
improvement 
between memory units and processing units and by approaching the physical 
limit for scaling CMOS technology. In this context, Neuromorphic Computing emerges: 
started from the seminal work of Carver Mead in the late ’80s, this new paradigm draws 
inspiration from biological neural structures to emulate the functioning and efficiency of 
the brain at the hardware level. In the brain, there is no separation between computing 
and memory: the two fundamental units, neurons and synapses, work in synergy, and the 
concepts of memory and computing merge. Beyond a shift towards in-memory computing, 
biological networks are characterized by their plasticity, or the ability to continuously 
adapt to stimuli. It is neuronal plasticity that is responsible for our ability to remember, 
learn, and adapt through a myriad of complex plasticity mechanisms that together result 
in energy efficiency and computational capabilities that are unimaginable in their artificial 
counterparts today. However, new paradigms usually require new technologies, and this 
is where resistive switching devices come into play. These emerging memory devices are 
not only viable for supporting future technological scaling but potentially can implement 
mechanisms that emulate the plasticity of the human brain. Expanding and investigating 
this set of plasticity and learning mechanisms is the open challenge of neuromorphic 
computing, leading to scalable, efficient, and biologically plausible systems. 
This doctoral thesis focuses on expanding the plasticity mechanisms achievable through 
the dynamic properties of memristive devices and their use in biologically plausible 
neuromorphic 



systems, where this latter component is crucial for bridging the gap between 
models of computational neuroscience and hardware for AI. The approach of this work 
is based on moving computation inside the device by exploring its intrinsic dynamics resulting 
from its physical properties. A framework is presented that defines the boundary 
between static and dynamic memory in neuromorphic systems and how this impacts the 
emulation of biological mechanisms. This maps onto three structural areas of the work, 
analogous to properties present in biological neural networks: external factors that modify 
plasticity, internal dynamic factors that act on plasticity, and stochasticity. 
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